Extremizing algebraic connectivity subject to graph theoretic constraints
نویسندگان
چکیده
منابع مشابه
On algebraic connectivity of graphs with at most two points of articulation in each block
Let G be a connected graph and let L(G) be its Laplacian matrix. We show that given a graph G with a point of articulation u, and a spanning tree T , there is a way to give weights to the edges of G, so that u is the characteristic vertex and the monotonicity property holds on T . A restricted graph is a graph with a restriction that each block can have at most two points of articulation. We su...
متن کاملMaximizing algebraic connectivity for certain families of graphs
We investigate the bounds on algebraic connectivity of graphs subject to constraints on the number of edges, vertices, and topology. We show that the algebraic connectivity for any tree on n vertices and with maximum degree d is bounded above by 2 (d− 2) 1 n + O ( lnn n2 ) . We then investigate upper bounds on algebraic connectivity for cubic graphs. We show that algebraic connectivity of a cub...
متن کاملA note on a graph related to the comaximal ideal graph of a commutative ring
The rings considered in this article are commutative with identity which admit at least two maximal ideals. This article is inspired by the work done on the comaximal ideal graph of a commutative ring. Let R be a ring. We associate an undirected graph to R denoted by mathcal{G}(R), whose vertex set is the set of all proper ideals I of R such that Inotsubseteq J(R), where J(R) is...
متن کاملSOME RESULTS ON THE COMPLEMENT OF THE INTERSECTION GRAPH OF SUBGROUPS OF A FINITE GROUP
Let G be a group. Recall that the intersection graph of subgroups of G is an undirected graph whose vertex set is the set of all nontrivial subgroups of G and distinct vertices H,K are joined by an edge in this graph if and only if the intersection of H and K is nontrivial. The aim of this article is to investigate the interplay between the group-theoretic properties of a finite group G and the...
متن کاملTHE ORDER GRAPHS OF GROUPS
Let $G$ be a group. The order graph of $G$ is the (undirected)graph $Gamma(G)$,those whose vertices are non-trivial subgroups of $G$ and two distinctvertices $H$ and $K$ are adjacent if and only if either$o(H)|o(K)$ or $o(K)|o(H)$. In this paper, we investigate theinterplay between the group-theoretic properties of $G$ and thegraph-theoretic properties of $Gamma(G)$. For a finite group$G$, we s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017